Cryogenic CO₂ Capture – Cost-Effective CCS Larry Baxter, Stephanie Burt Brigham Young University Andrew Baxter Sustainable Energy Solutions February 25, 2010 ACERC Conference Provo, UT # Cryogenic CO₂ Capture - I ### **ASU Comparison** **ASU** Energy Demand Heat Exchange Small Large Utilization Intermediate CCC Energy Demand Utilization Heat Exchange Smaller None Very Small ## **Energy Efficiency** ## Plant Integration Advantages (Not Accounted for in Cost Comparisons) - Replaces/reduces SO₂ and NO_x treatments (additional 25-30 % capital and non-fuel operating cost reduction) - Stores and regenerates energy (minimizes or avoids new plant construction) - Retrofits existing systems with minimal boiler modification (possibly reduces new permitting and leverages legacy boiler investments) - Provides inherent low temperature stream (decreases turbine outlet temperature for better efficiency and reduces cooling water requirements) - Recovers water in usable form #### **Levelized Cost of Electricity** Data for all non-CCC systems computed by DOE (2007) using same software. ## Cost per Avoided Ton of CO₂ Data for all non-CCC systems computed by DOE (2007) using same software. ## Marginal Cost Increases #### **CCC** vs Alternatives ### Capture Efficiency at 1 atm ## **Capture Efficiency** #### **Materials Tests** ## CO₂ psd Particle Size, microns #### **Preliminary Experimental Data** #### **Commercial Benefits** - CO₂ Separation 40% Cheaper and With Less Energy Cost than Alternatives - Bolt-On Technology - Major Plant Integration Advantages - System Compatibility ## Acknowledgements - Rachel Stevenson, Jacob Larsen, Doug Parker, Grant Evans, Shawn Kunzler, David James, Jacob Jones, Scott Greenwood, Chris Bence - Dong Energy, CRE Energy ## Plant Integration Advantages (Not Accounted for in Cost Comparisons) - Replaces/reduces SO₂, Hg, HCl, NO₂ and possibly NO_x treatments - Can store and regenerate energy efficiently (minimizes or avoids new plant construction) - Retrofits existing systems with minimal boiler modification (possibly reduces new permitting and leverages legacy boiler investments) - Provides inherent low temperature stream (decreases turbine outlet temperature for better efficiency and reduces cooling water requirements) #### **Current Efforts** - Laboratory experiments and demonstrations - Bench-scale, integrated operation - Preparing or submitted proposals for skid-scale and pilot-scale systems #### CO₂ Phase Diagram # Liquid CO₂ Thermodynamics # Solid CO₂ Thermodynamics Data for typical flue gas composition (13.5% CO₂, 3% O₂, 100 ppm SO₂ and NO, balance N₂)