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Plant Integration Advantages

(Not Accounted for in Cost Comparisons)

» Replaces/reduces SO, and NO, treatments (additional 25-30 %
capital and non-fuel operating cost reduction)

 Stores and regenerates energy (minimizes or avoids new
plant construction)

e Retrofits existing systems with minimal boiler modification
(possibly reduces new permitting and leverages legacy boiler
investments)

» Provides inherent low temperature stream (decreases
turbine outlet temperature for better efficiency and reduces
cooling water requirements)

e Recovers water in usable form
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Data for all non-CCC systems computed by DOE (2007) using same software.
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CCC vs Alternatives
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Capture Efficiency (%)

Capture Efficiency at 1 atm
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Materials Tests
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Preliminary Experimental Data
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Commercial Benefits

» CO, Separation 40% Cheaper and With Less
Energy Cost than Alternatives

e Bolt-On Technology
e Major Plant Integration Advantages

e System Compatibility
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Plant Integration Advantages

(Not Accounted for in Cost Comparisons)

» Replaces/reduces SO,, Hg, HCl, NO, and possibly NO,
treatments

e Can store and regenerate energy efficiently (minimizes
or avoids new plant construction)

e Retrofits existing systems with minimal boiler
modification (possibly reduces new permitting and
leverages legacy boiler investments)

e Provides inherent low temperature stream (decreases
turbine outlet temperature for better efficiency and
reduces cooling water requirements)



Current Efforts

e Laboratory experiments and demonstrations
» Bench-scale, integrated operation

* Preparing or submitted proposals for skid-scale and
pilot-scale systems
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Liquid CO, Thermodynamics
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Solid CO, Thermodynamics
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