Cryogenic CO₂ Capture – Cost-Effective CCS

Larry Baxter, Stephanie Burt Brigham Young University

Andrew Baxter
Sustainable Energy Solutions

February 25, 2010 ACERC Conference Provo, UT

Cryogenic CO₂ Capture - I

ASU Comparison

ASU

Energy Demand

Heat Exchange

Small

Large

Utilization

Intermediate

CCC

Energy Demand

Utilization

Heat Exchange

Smaller

None

Very Small

Energy Efficiency

Plant Integration Advantages

(Not Accounted for in Cost Comparisons)

- Replaces/reduces SO₂ and NO_x treatments (additional 25-30 % capital and non-fuel operating cost reduction)
- Stores and regenerates energy (minimizes or avoids new plant construction)
- Retrofits existing systems with minimal boiler modification (possibly reduces new permitting and leverages legacy boiler investments)
- Provides inherent low temperature stream (decreases turbine outlet temperature for better efficiency and reduces cooling water requirements)
- Recovers water in usable form

Levelized Cost of Electricity

Data for all non-CCC systems computed by DOE (2007) using same software.

Cost per Avoided Ton of CO₂

Data for all non-CCC systems computed by DOE (2007) using same software.

Marginal Cost Increases

CCC vs Alternatives

Capture Efficiency at 1 atm

Capture Efficiency

Materials Tests

CO₂ psd

Particle Size, microns

Preliminary Experimental Data

Commercial Benefits

- CO₂ Separation 40% Cheaper and With Less Energy Cost than Alternatives
- Bolt-On Technology
- Major Plant Integration Advantages
- System Compatibility

Acknowledgements

- Rachel Stevenson, Jacob Larsen, Doug Parker, Grant Evans, Shawn Kunzler, David James, Jacob Jones, Scott Greenwood, Chris Bence
- Dong Energy, CRE Energy

Plant Integration Advantages

(Not Accounted for in Cost Comparisons)

- Replaces/reduces SO₂, Hg, HCl, NO₂ and possibly NO_x treatments
- Can store and regenerate energy efficiently (minimizes or avoids new plant construction)
- Retrofits existing systems with minimal boiler modification (possibly reduces new permitting and leverages legacy boiler investments)
- Provides inherent low temperature stream (decreases turbine outlet temperature for better efficiency and reduces cooling water requirements)

Current Efforts

- Laboratory experiments and demonstrations
- Bench-scale, integrated operation
- Preparing or submitted proposals for skid-scale and pilot-scale systems

CO₂ Phase Diagram

Liquid CO₂ Thermodynamics

Solid CO₂ Thermodynamics

Data for typical flue gas composition (13.5% CO₂, 3% O₂, 100 ppm SO₂ and NO, balance N₂)